
Building GTK apps with Glade
By Grant McLean

One advantage of the GTK GUI toolkit is the 'Glade' user interface
builder. Glade allows you to build your UI and associate event handlers
with widgets using point and click. This allows a clean separation of user
interface definition and 'business logic'. It also completely eliminates much
of the code required to build an interface.

If you've looked at a Perl program that uses a GUI toolkit then you may have found yourself
looking at big ugly mess of code. It's common to find code for creating and laying out widgets
mixed in with the callback code that will be triggered by different GUI events. As well as being a
nightmare to maintain, it's also fairly tedious to write in the first place. If you're using the Gtk2
toolkit, the Glade GUI builder can save you from all that.

Recently, I needed some GUI code fast. The local Perl
Mongers group was having a lightning talk evening
and I wanted a simple application to time the talks and
trigger sound effects to warn the speakers when their
time was up. What I had in mind was something like
Figure 1 (actually, what I had in mind was the slightly
more complex version at the end of the article, but we
have to start somewhere).

This simple interface provides one button which will
toggle between start and stop (just like a real stopwatch). It also provides a label and a progress bar
to show the elapsed time.

Building the Interface
When I launched the Glade interface designer, three windows appeared - the project, palette and
properties windows. I used the 'New' button on the toolbar in the main project window (Figure 2) to
create a new project.

At this point Glade offered me the choice of creating a 'New GTK+ Project' or a 'New GNOME
Project'. Since I didn't need any GNOME-
specific widgets, I selected the GTK+ option.

Figure 2 - The Glade project window

Figure 1 - A simple application window

Next, I used the very first icon in Glade's widget palette to add an application window to the new
project. This gave me a new blank window called 'window1' (Figure 3) to serve as the container for
the user interface elements.

Figure 3 - Glade palette window and application window

Before adding any more widgets, I used Glade's properties window to change the widget name from
'window1' to 'appwin' and the title to 'Lightning Talk Timer' (Firgure 4).

Although it is possible to place widgets at
fixed positions within a window, it's not a
particularly good idea. An arrangement that
looks good on your system may well look a
mess on a system with different fonts installed
or a different desktop theme. Instead, Gtk
provides a number of layout widgets that act
as containers for other widgets. The layouts
automatically adjust for different font sizes
and window sizes.

I chose to use a 'Table' widget with one column of three rows. A 'VBox' widget would give a similar
result, but I like to add padding to prevent the layout looking cramped, and that's easier with a table.

To add the table, I clicked once on the table icon in the palette and once in the application window
(unfortunately you can't drag and drop). Using the same technique I added a label widget into the
first row of the table, a progress bar into the second and a button into the third. The only gotcha in
that sequence was that the icon for the progress bar widget appears on the 'GTK+ Additional' tab of
the palette. This gave me the widgets I wanted but the layout needed to be smartened up (Figure 5).

I clicked to select the label widget. Then back over in
the properties window, I set the 'Name' to 'timer_label'
and the initial text to '0:00'. I also set the 'X Align'
property to '0.50' to make the text horizontally centered
within the allocated space ('0.00' would be left aligned
and '1.00' would be right aligned). Using the 'Packing'
properties tab I set the 'H Padding' and 'V Padding' to 4
pixels each and the 'X Expand', 'Y Expand', 'X Fill' and
'Y Fill' all to 'Yes'.

Figure 4 - Glade properties window

Figure 5 - Widgets added to application window

The progress bar required less work. I set the widget name to 'progress_bar', the 'H Padding' to 40
pixels and the 'X Fill' to yes. I left the 'Y Fill', 'X
Expand' and 'Y Expand' properties set to 'No'.

Finally, I set the button's name to 'start_stop', label to
'Start', 'V Padding' to 4 pixels and 'X Fill' to 'No'.

The font on the label widget was still too small, but
apart from that, the interface looked just the way I
wanted (Figure 6). I saved the project to a file called
���������	
�����.

Testing the Interface
To test the interface, I started with this simple Perl wrapper:

�����	�������	�
��

���
��	����

���
����
������

���
���������������

��
 ���
!
���������������"���#$���������	
�����$%�

�����"�����

When I ran this script, my talk timer window popped up and looked almost useful. Unfortunately,
when I closed the window, my script did not exit and I had to interrupt it with Ctrl-C. This is the
default behaviour for Gtk2 scripts and the correct way to deal with it is to set up a handler which
quits from the main event loop in response to the application window's 'delete_event' signal.

It might have been tempting at this point to start extending the wrapper script to set up the necessary
event handling, but with Glade, there is a better way. By refactoring the wrapper script to represent
the running application as an object, I can use Glade to turn GUI events into method calls.

I created &���&���	
�� to contain the logic for an instance of the application:

�������
&���&���	�

���
��	����

���
��	������

���
����
'�#&()*
+,�-*%�

���
����
������

���
���������������

���
	��
.
��
 ���/
!
�0�/��"����
�����"�����
1

���
���
.
	���	�
�����#.12
�0�/�%�"3�����
1

Figure 6 - After setting widget properties

���
3����
.

��
 ���/
!
�0�/��

��
 �����3/���
!
33+4�*33�

 �����3/���
!5
��&���&���	
������������	
�������

��
 ���
!
���������������"���# �����3/���%�

 ����"������3���6�6�����3/	6�3�������# ���/%�

	���	�
 ���/�

1

���
6�3������3������3�7���
.

�����"����3'����

1

8�

The &���&���	 class defines a 	�� method which creates a &���&���	 object and then enters the
Gtk2 event loop. The object constructor uses the 3���� method to locate and load the
����� file
containing the user interface definition. Then 3���� uses GladeXML's
������3���6�6�����3/	6�3������� method to turn each signal handler defined in the
�����
file into a method call on the application object. The 6�3������3������3�7��� will be called
when the window is closed and its job is to tell the event loop to quit.

Next, I altered the wrapper script to use the new application class:

�����	�������	�
��

���
��	����

���
+���9���

���
���
 +���9����9���

���
&���&���	�

&���&���	�"	���

Finally, back in Glade, I set up the 'delete_event' signal handler. The first step was to select the
application window widget. This is a little tricky since clicking anywhere in the application window
either selects one of the three interface widgets or selects the table widget they are contained in. One
solution is to right-click anywhere in the window and choose 'appwin->Select' from the pop-up
menu. Another option is to use Glade's 'View' menu to show the 'Widget Tree' and use that to select
'appwin'.

Once the 'appwin' was selected, I went to the 'Signals' tab in the properties window. When I selected
'delete_event' from the pop-up list of signals, Glade automatically generated the
6�3������3������3�7��� method name, so all I needed to do was click 'Add' and then save the
project.

This new version of the script exited cleanly when the window was closed.

Adding the Application Logic
To make the application fully functional, only one more signal needed to be hooked up. Back in
Glade, I selected the 'start_stop' button and associated the 'clicked' event with the
6�3���	�3��6�3������� method (and saved the project again).

Then back in &���&���	
�� I added some constants to define when the sounds should be played (I
used smaller values during testing) and which sound files to use:

���
�6������
&4�*(3�,�4�)�

!"
:
;
<=�

���
�6������
&4�*(3>,(?4?�

!"
@
;
<=�

���
�6������
>,(?4?�3-A)?B

!"
$>,(?4?�
>,C$�

���
�6������
&4�*-3)D3-A)?B
!"
$�A?�
>,C$�

I also added some accessor methods for storing the application state:

���
����
$E������,�����6	��+���$�

33D,EF,�*33�"��3������6	�#'�#

�����
�	6�	���
���	�3��6�

���	�3����
	������
��	���
�����3��

%%�

and fleshed out the 3���� method to save references to the interface widgets and to set the font on
the timer label:

���
3����
.

��
 ���/
!
�0�/��

��
 �����3/���
!
33+4�*33�

 �����3/���
!5
��&���&���	
������������	
�������

��
 ���
!
���������������"���# �����3/���%�

 ����"������3���6�6�����3/	6�3�������# ���/%�

 ���/�"�����

# ����"���3������#$����	3�����$%
%�

 ���/�"�	6�	���

# ����"���3������#$�	6�	���3��	$%%�

 ���/�"���	�3��6�# ����"���3������#$���	�3��6�$%

%�

 ���/�"������"�6��/�3/6��#

������D���6��+6��B���	����6��"/	6�3��	���#G-���
@=G%

%�

	���	�
 ���/�

1

Finally, I added the methods triggered by the Start/Stop button.

���
6�3���	�3��6�3�������
.

��
 ���/
!
�0�/��

�/# ���/�"	������%
.

 ���/�"��6�3����	�

1

����
.

 ���/�"���	�3����	�

1

1

���
���	�3����	
.

��
 ���/
!
�0�/��

 ���/�"���	�3����#����%�

 ���/�"	������#&()*%�

 ���/�"��	���#+,�-*%�

 ���/�"�����3��#+,�-*%�

 ���/�"���	�3��6��"���3�����#$-�6�$%�

������&���6���"���#8===2
���
.
 ���/�"����
1%�

1

���
��6�3����	
.

��
 ���/
!
�0�/��

 ���/�"	������#+,�-*%�

 ���/�"������"���3��H�#$=�==$%�

 ���/�"�	6�	����"���3/	����6�#=%�

 ���/�"���	�3��6��"���3�����#$-��	�$%�

1

���
����
.

��
 ���/
!
�0�/��

	���	�
+,�-*
������
 ���/�"	�������

��
 ����
!
����
�
 ���/�"���	�3�����

 ���/�"������"���3��H�#

��	���/#$I��I=��$2
���# �����<=%2
 ����
I
<=%

%�

��
 /	��
!
 ����
"
&4�*(3�,�4�)�
J
8
�
 �����&4�*(3�,�4�)��

 ���/�"�	6�	����"���3/	����6�# /	��%�

�/# ����
"!
&4�*(3�,�4�)�

���

� ���/�"�����3��%
.

 ���/�"�����3��#&()*%�

 ���/�"����3�����3��3�6����

1

����/# ����
"!
&4�*(3>,(?4?�

���

� ���/�"��	���%
.

 ���/�"��	���#&()*%�

 ���/�"����3��	����3�6����

1

	���	�
&()*�

1

���
����3��	����3�6���

.
����3�6���#>,(?4?�3-A)?B%�

1�

���
����3�����3��3�6���
.
����3�6���#&4�*-3)D3-A)?B%�
1�

���
����3�6���
.

��
 /�������
!
�0�/��

������#G����
 /�������
"���7�����
�"K8
KG%�

1

The ���	�3����	 method arranges for the ���� method to be called after a one second timeout.
As long as ���� returns TRUE, the timeout callback will repeat at one second intervals. As the
configured intervals are are reached, the ���� method will arrange for the appropriate sounds to be
played.

On my Linux laptop, I used the ���� command that comes with the SOX sound file translation
package. On Windows, the >��L���-6��� module provides a similar service using the standard
Win32 APIs.

Extending the Timer App
Of course real life is never as tidy as a well written Perl script. The real version of the script I used
had an interface that looked like Figure 7.

With this version, the sound effects
could be switched to manual mode
without interrupting the timer display.
So at the operator's discretion, a
particularly interesting speaker could be
given a little extra time or a floundering
speaker could be 'saved by the bell'.

If you want to try your hand at
extending the app in this direction, you
can add the extra widgets and set signal
handler names using Glade. Then define
your handlers in &���&���	
��. I used
the ���3�������7� method on the
extra button widgets to enable/disable them as the checkbox was toggled.

Packaging the App
Having the application split into three separate files is very convenient during development, but
might not be ideal for deployment. You can move the definition of the &���&���	 package directly
into the wrapper script. You could also put the contents of the ���������	
����� file into a
33B,&,33 section or a 'here doc' and initialize the UI with the ���������������
"���3/	6�3��//�	 method.

Of course even this simple application requires a couple of extra media files for the sound effects.
Larger and more complex applications might need custom icons and other image files. In those
cases, you might want to use a platform specific packaging method such as .deb or RPM, or a Perl-
specific format such as PAR.

Figure 7 - Application with manual override widgets added

Glade on Win32
The Gtk2::GladeXML module is available in PPM format for Microsoft Windows from the Gtk2-
Perl project on SourceForge.

The Glade interface designer itself is available from the GladeWin32 project, also on SourceForge.

About the Author
Grant McLean M�	����N����
6	�" lives with his wife and two children in Wellington, New
Zealand. He writes Perl code for a living and works on the Sprog project
(http://sprog.sourceforge.net) for fun. He may never again be allowed to time lightning talks at
Wellington.pm.

Copyright (C) 2005 Grant McLean

